
27 November 2015

Product Characteristics
• An n-tier application hosted on AWS.

• Platform has a set of micro services developed in Node JS.

• Mongo and RDS used as asset and metadata repositories for the platform.

Development & Deployment Environment
• Atlassian Bitbucket used as the code repository.

• JIRA used as the ALM tool.

• Dev environments were local to developers.

• Test, Staging and Production environments hosted on AWS

The company is one of the leading digital video entertainment companies that runs
a number of YouTube channels. They have their own asset management and
processing platform which serves as the technology backend for manging the
lifecycle of all digital assets.

• Deployment of builds took 5-6 hours.
• Setting up multiple parallel production

environments was time consuming and
error prone.

• Test and Staging environments were
static in nature resulting in increased
costs.

• No CI pipeline in place.
• No centralized repository for storing build

packages. Build packages stored in the file
system.

• No governance enforced on deployment of
builds.

• Build promotion between Testing, Staging
and various Production environments was
done by recompiling source code.

• CI pipeline configured to generate scheduled
builds using Jenkins.

• Distelli configured to manage various
deployment environments and to enforce
release governance and automate roll-
backs in case of deployment errors.

• Chef used for infrastructure automation. Test
and Staging environments created on the
fly and decommissioned automatically as
soon as the test cycles are completed.

• Build promotion between Testing, Staging
and various Production environments
implemented using packages stored in the
Artifactory package repository.

• Release cadence reduced to 2 weeks
 from 4 weeks.
• AWS costs reduced by more than 70%.
• Environment setup time reduced to 1

hour from 1.5 days
• Build creation time reduced by more

than 90%.
• Upgrade errors reduced by more than

30%.

• Slow response to application failure
incidents.

• Root cause analysis of incidents took a
long time.

• No monitoring of application parameters in
 Production environments.

• New Relic and AWS CloudWatch used to
capture and display environment and appli-
cation performance metrics via custom dash-
boards.

• Alert policies configured to inform relevant
users about potential application failure risks.

• Application failure rate reduced by 25%
through risk mitigation done via proac-
tive monitoring.

• Incident resolution time reduced by more
than 30% due to availability of richer
application logs.

 Identified Issues

• Low confidence in code fixes being applied
for bug resolution.

• Error prone and time consuming platform
upgrades.

Root Cause

• Code reviews not enforced.
• No branching strategy being followed.
• Code check-ins not tagged to work

items/bugs.

 Solution

• Code analysis using SonarQube configured
to validate code quality during compilation.

• Pre-commit code reviews enforced using
ReviewBoard to ensure code quality.

• GitFlow branching strategy implemented in
BitBucket to streamline merge paths and
enable release of patches.

• Smart commits configured in JIRA and Bit-
bucket for maintaining traceability of code
changes.

 Impact

• Code merging time reduced by more
than 70%

• Issues related to incorrect code check-
in's reduced by more than 80%

• Substantial improvement is code quality
as measured through code analysis
metrics

• Automated creation of Mongo and AWS
RDS update scripts has significantly
reduced deployment errors related to
database upgrades.

SC
CM

Bu
ild

 a
nd

 R
el

ea
se

M
on

ito
rin

g

Case Study

Websym Solutions Pvt. Ltd.
Plot no. 34/2, Rajiv Gandhi Infotech Park – Phase 1,
Hinjewadi, Pune 411 057 – India

Phone: +91 (20) 661 43 400
Fax: +91 (20) 661 43 500
Email: sales@websym.com websym.com

